
Pinworm

Man in the middle for metadata
@bigezy_(bigezy)
@itsasstime (saci)

[need to add Introduction section]

My previous related

• Badger: Blackhat 2014
https://www.blackhat.com/docs/us-
14/materials/us-14-Rogers-Badger-The-
Networked-Security-State-Estimation-
Toolkit.pdf

• Kobra: BsidesLV 2015
https://youtu.be/gOMVOv6VX50

https://www.blackhat.com/docs/us-14/materials/us-14-Rogers-Badger-The-Networked-Security-State-Estimation-Toolkit.pdf
https://youtu.be/gOMVOv6VX50

Previous work from other people

• IRPtracker
https://www.osronline.com/article.cfm?articl
e=199

• IRPmon
https://github.com/MartinDrab/IRPMon

https://www.osronline.com/article.cfm?article=199
https://github.com/MartinDrab/IRPMon

Data observations

• Inside packets 998,802,444

• Outside packets 1,371,775,557

• Observed Destinations Firewalled Side 29,829
– 29,525 resolved via reverse lookup

[2016 Observations]

• Destinations per https connection up 400
percent for certain media sites

• SSL data is streaming out even when the pc is
idle.

• More details to be added here later

Is it 1984?

• Mouse Movements
– List of sites that track mouse movements from data

(will be released at talk)

• Key Strokes?

• Microphone?

• Video?

A bit bloated

IRP

• Previous projects such as IRPtracker (link in
attachment) proved interesting, but, sadly this
program is limited to 32 bits.

• But how to track 64 bit IRB process calls

• Luckily there was a great start into this forensic
research using an IRP sniffer based on work done
by Martin Drab IRPmon

IRPmon downfalls
• IRPmon was a good start and showed the gaps

needed to provide for man in the middle

• More precision and information was needed
regarding the data flows within the operating
system

• Device calls needed an in memory datastore so it
would be possible to virtualize flows and pinpoint
any duplication of input devices within the OS

IRP Sniffing

• Instrumentation of process access to devices

• Devices provide I/O services that can be used
by processes to harvest information
– Keyboard
– Mouse
– Microphone
– Video

Mouse movement
• What processes are interested in the mouse

movements in your browser?

• What network traffic is then generated as a result
of these calls?

• Use multiple data sources to get access to those
things:
– 1 The object table can include device objects
– 2 IRP requests

Why Windows 7/8?

• Windows 10 will work with chrome or firefox
add on (future work)

• We are building this framework from scratch
and are providing it to the community for to
ensure integrity of data communications with
privacy in mind

• Fuck windows 10 (cause I wanted 3 reasons)

Easy mode

• Meeting your adversary at his own level of
abstraction makes finding breaches of privacy
easy

• Getting to this level of abstraction however
requires repeated failure at accessing the
kernel level drivers

Pinworm Core (Old school code slides)

Pulling the processes
void InitializeProcessState()
{
unsigned __int64 eproc = 0x00000000;
int current_PID = 0;
int start_PID = 0;
int i_count = 0;

PLIST_ENTRY plist_active_procs;
InitializeListHead(&ProcessStateList);
// Get the address of the current EPROCESS
eproc = (unsigned __int64)PsGetCurrentProcess();
start_PID = *((int *)(eproc + _kpPIDOFFSET));
current_PID = start_PID;

while (1)
{

//check end of list
if ((i_count >= 1) && (start_PID == current_PID))
break;

DbgPrint("Test: PID is %d\n", current_PID);
//Insert Item
//allocate
addNewProcess(eproc);

plist_active_procs = (LIST_ENTRY *)(eproc + _kpFLINKOFFSET);
eproc = (unsigned __int64)plist_active_procs->Flink;
eproc = eproc - _kpFLINKOFFSET;
current_PID = *((int *)(eproc + _kpPIDOFFSET));
i_count++;
}

Don’t Panic there is also a UI!

Moar Code first

Client Kung fu:
int main(int argc, char** argv) {
HANDLE hDevice;
BOOL status;
hDevice = CreateFile(L"\\\\.\\KBR",

GENERIC_READ | GENERIC_WRITE, 0,NULL,
OPEN_EXISTING, 0, NULL);

// Variable for the run-time callout identifier
UINT32 CalloutId;
HANDLE engineHandle;
UINT32 gStreamCalloutIdV4, gFlowEstablishedCalloutIdV4;
UINT32 kIPV4Outbound;
PVOID * NotificationHandle;
LIST_ENTRY ProcessStateList;
ProcessProfile * state;
PDEVICE_OBJECT pDeviceObject = NULL;

// Pool tags used for memory allocations
#define WSKTCP_SOCKET_POOL_TAG ((ULONG)'sksw')
#define WSKTCP_BUFFER_POOL_TAG ((ULONG)'bksw')
#define WSKTCP_GENERIC_POOL_TAG ((ULONG)'xksw')

// callout functions
VOID NTAPI
ClassifyFn(
IN const FWPS_INCOMING_VALUES0 *inFixedValues,
IN const FWPS_INCOMING_METADATA_VALUES0 *inMetaValues,
IN OUT VOID *layerData,IN const FWPS_FILTER0 *filter,
IN UINT64 flowContext,

IN OUT FWPS_CLASSIFY_OUT0 *classifyOut)

// Process the IRP
//Parse and print to debugger with a tag for filtering
NTSTATUS status, pstatus = STATUS_SUCCESS;
PVOID userBuffer, cmdBuffer;
ULONG xferSize;
ULONG i, thNum;
// The stack location contains the user buffer info
PIO_STACK_LOCATION pIrpStack = IoGetCurrentIrpStackLocation(pIrp);

// Dig out the Device Extension from the Device object
// Determine the length of the request
xferSize = pIrpStack->Parameters.Write.Length;
// Obtain user buffer pointer
userBuffer = pIrp->AssociatedIrp.SystemBuffer;
//allocate buffer and copy for no reason
cmdBuffer = ExAllocatePool(NonPagedPool, xferSize);
if (cmdBuffer == NULL) {

// buffer didn't allocate???
status = STATUS_INSUFFICIENT_RESOURCES;
xferSize = 0; }

else {
RtlCopyMemory(cmdBuffer, userBuffer, xferSize); }

To add a filter that references a callout
(documented in the Windows Driver Kit(WDK))

• Invoke the functions in the following order

– Call to register the callout with the filter engine.

– Call FwpmCalloutAdd0 to add the callout to the
system

– Call FwpmFilterAdd0 to add the filter that
references the callout to the system.

Case Study 1

• What does a process within a browser do in
regards to mouse movement?

• Where does the forked mouse movement
data go when its sent to the internet?

• Does this data exfiltration forking occur inside
the browser, in kernel land, or in user space?

Demo

• www.kaedago.com/saci

• Notice the frames to the left

• We will use these frames to demonstrate the
injection of data using pinworm

http://www.kaedago.com/saci

Case Study 2

• We have two sniffer instrumented computers.
One computer has been using Windows 7 for
the last few years.

• We will use a control computer with a recently
installed and patched copy of windows 7.

• What are the differences in network traffic
between the two computers?

• What are the results from using different
patched browsers on both PC's?

Man in the middle demo

• Show keyboard injection using pinworm

• Show mouse movement

• Show microphone injection

• Show video injection

Social Media Demo

• Process instrumentation of social media sites
– Redacted.com
– Example.com
– Whattillthetalk.com

Toolchain framework

• UI client and cone of silence are still in alpha

• Framework will be released when its ready

• Pinworm and the test site available now

Releasing of Pinworm github.com/bigezy/pinworm
including:

1. Sniffer to instrument device driver calls.

2. Http Server code to display metadata collected
on users

3. Man in the middle client for interception of
device owners private information and white noise
generator.

Thanks

